Modeling Context-sensitive Selectional Preference with Distributed Representations

نویسندگان

  • Naoya Inoue
  • Yuichiroh Matsubayashi
  • Masayuki Ono
  • Naoaki Okazaki
  • Kentaro Inui
چکیده

This paper proposes a novel problem setting of selectional preference (SP) between a predicate and its arguments, called as context-sensitive SP (CSP). CSP models the narrative consistency between the predicate and preceding contexts of its arguments, in addition to the conventional SP based on semantic types. Furthermore, we present a novel CSP model that extends the neural SP model (Van de Cruys, 2014) to incorporate contextual information into the distributed representations of arguments. Experimental results demonstrate that the proposed CSP model successfully learns CSP and outperforms the conventional SP model in coreference cluster ranking.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Mixture Model with Sharing for Lexical Semantics

We introduce tiered clustering, a mixture model capable of accounting for varying degrees of shared (context-independent) feature structure, and demonstrate its applicability to inferring distributed representations of word meaning. Common tasks in lexical semantics such as word relatedness or selectional preference can benefit from modeling such structure: Polysemous word usage is often govern...

متن کامل

Thematic fit evaluation: an aspect of selectional preferences

In this paper, we discuss the human thematic fit judgement correlation task in the context of real-valued vector space word representations. Thematic fit is the extent to which an argument fulfils the selectional preference of a verb given a role: for example, how well “cake” fulfils the patient role of “cut”. In recent work, systems have been evaluated on this task by finding the correlations ...

متن کامل

Improving Lexical Semantics for Sentential Semantics: Modeling Selectional Preference and Similar Words in a Latent Variable Model

Sentence Similarity [SS] computes a similarity score between two sentences. The SS task differs from document level semantics tasks in that it features the sparsity of words in a data unit, i.e. a sentence. Accordingly it is crucial to robustly model each word in a sentence to capture the complete semantic picture of the sentence. In this paper, we hypothesize that by better modeling lexical se...

متن کامل

Detecting novel metaphor using selectional preference information

Recent work on metaphor processing often employs selectional preference information. We present a comparison of different approaches to the modelling of selectional preferences, based on various ways of generalizing over corpus frequencies. We evaluate on the VU Amsterdam Metaphor corpus, a broad corpus of metaphor. We find that using only selectional preference information is enough to outperf...

متن کامل

Exploiting Web-Derived Selectional Preference to Improve Statistical Dependency Parsing

In this paper, we present a novel approach which incorporates the web-derived selectional preferences to improve statistical dependency parsing. Conventional selectional preference learning methods have usually focused on word-to-class relations, e.g., a verb selects as its subject a given nominal class. This paper extends previous work to wordto-word selectional preferences by using webscale d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016